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Abstract

FOCUS results from Dalitz-plot analyses of D+
s and D+ to �+���+ are presented.

The K-matrix formalism is applied to charm decays for the �rst time, which allows
us to fully exploit the already existing knowledge coming from light-meson spec-
troscopy experiments. In particular all the measured dynamics of the S-wave ��
scattering, characterized by broad/overlapping resonances and large non-resonant
background, can be properly included. This paper studies the extent to which the
K-matrix approach is able to reproduce the observed Dalitz plot and thus help us
to understand the underlying dynamics. The results are discussed along with their
possible implications for the controversial � meson.

Key words: Amplitude analysis, charm decay, light scalars
PACS:

1 Introduction

Charm-meson decay dynamics has been extensively studied in the last decade.
The analysis of the three-body �nal state by �tting Dalitz plots has proved
to be a powerful tool for investigating e�ects of resonant substructure, inter-
ference patterns, and �nal state interactions in the charm sector. The isobar
formalism, which has traditionally been applied to charm amplitude analyses,
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represents the decay amplitude as a sum of relativistic Breit-Wigner propa-
gators multiplied by form factors plus a term describing the angular distribu-
tion of the two body decay of each intermediate state of a given spin. Many
amplitude analyses require detailed knowledge of the light-meson sector. In
particular, the need to model intermediate scalar particles contributing to the
charm meson in the decays reported here has caused us to question the validity
of the Breit-Wigner approximation for the description of the relevant scalar
resonances [1, 2]. Resonances are associated with poles of the S-matrix in the
complex energy plane. The position of the pole in the complex energy plane
provides the fundamental, model-independent, process-independent resonance
description. A simple Breit-Wigner amplitude corresponds to the most ele-
mentary type of extrapolation from the physical region to an unphysical-sheet
pole. In the case of a narrow, isolated resonance, there is a close connection
between the position of the pole on the unphysical sheet and the peak we ob-
serve in experiments at real values of the energy. However, when a resonance
is broad and overlaps with other resonances, then this connection is lost. The
Breit-Wigner parameters measured on the real axis (mass and width) can
be connected to the pole-positions in the complex energy plane only through
models of analytic continuation.

A formalism for studying overlapping and many channel resonances has been
proposed long ago and is based on the K-matrix [3, 4] parametrization. This
formalism, originating in the context of two-body scattering, can be gener-
alized to cover the case of production of resonances in more complex reac-
tions [5], with the assumption that the two-body system in the �nal state is
an isolated one and that the two particles do not simultaneously interact with
the rest of the �nal state in the production process [4]. The K-matrix approach
allows us to include the positions of the poles in the complex plane directly
in our analysis, thus directly incorporating the results from spectroscopy ex-
periments [6, 7]. In addition, the K-matrix formalism provides a direct way
of imposing the two-body unitarity constraint which is not explicitly guaran-
teed in the simple isobar model. Minor unitarity violations are expected for
narrow, isolated resonances but more severe ones exist for broad, overlapping
states. The validity of the assumed quasi two-body nature of the process of the
K-matrix approach can only be veri�ed by a direct comparison of the model
predictions with data. In particular, the failure to reproduce three-body-decay
features would be a strong indication of the presence of the neglected three-
body e�ects.

2 Candidate selection

The FOCUS detector is a large aperture, �xed-target spectrometer with ex-
cellent vertexing and particle identi�cation capabilities. We have chosen cuts
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designed to minimize non-charm background as well as reection backgrounds
from misidenti�ed charm decays. The three-pion �nal states are obtained us-
ing a candidate driven vertex algorithm. A decay vertex is formed from three
reconstructed charged tracks. The momentum of the D candidate is used to
intersect other reconstructed tracks to form a production vertex. The con�-
dence levels (C.L.) of each vertex is required to exceed 1%. After the vertex
�nder algorithm, the variable `, which is the separation of the primary and
secondary vertex, and its associated error �` are calculated. We reduce back-
grounds by requiring `=�` > 10 and 7 for the D+ and D+

s , respectively. The
two vertices are also required to satisfy isolation conditions. The primary ver-
tex isolation cut requires that a track assigned to the decay vertex has a C.L.
less than 1% to be included in the primary vertex. The secondary vertex iso-
lation cut requires that all remaining tracks not assigned to the primary and
secondary vertex have a C.L. smaller than 0.1% to form a vertex with the D
candidate daughters. The decay vertex is required to be 3 � outside of the tar-
get material to reduce the background due to hadronic re-interactions in the
material. A cut on the negative log likelihood of the �Cerenkov hypothesis [8]
of WK�W� > 0 is required for each pion. A tighter cut of WK�W� > 5 is re-
quired on opposite-sign pion in the D+ decay in order to remove the K��+�+

reection contribution to the D+ low-mass sideband. We further require that
all three pions satisfy a loose pion-consistency cut of �W = W� �Wmin < 3
where Wmin is the negative log likelihood of the most favored �Cerenkov hy-
pothesis. The vertex isolation requirement nearly eliminates D�+ ! D0�+

contamination. The samples selected according to these requirements (Fig. 1)
consist of 1475 � 50 and 1527 � 51 signal events for the D+

s and D+ respec-
tively. The Dalitz plot analyses are performed on events within � the nominal
D+

s or D+ mass (Fig. 2).

3 The decay amplitude

The decay amplitude of the D meson into the three-pion �nal state is written
as:

A(D) = a0e
iÆ0 + F1 +

X
i

aie
iÆiB(abcjri); (1)

where the �rst term represents the direct non-resonant three-body amplitude
contribution, F1 is the contribution of S-wave states and the sum is over the
contributions from the intermediate two-body non-scalar resonances. B(abcjri)
are the usual Breit-Wigner terms of the traditional isobar model, whose ex-
plicit forms are given in [9]. F1 is written in the context of the K-matrix

approach which we will discuss shortly. The coeÆcients and phases of the
A(D) amplitude are all relative to a free parameter of the F1 amplitude, �1,
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resonances, the treatment of S-wave states requires a more general formalism
to account for non-trivial dynamics due to the presence of broad and overlap-
ping resonances [1,2]. For J = 0, only states with even isospin and positive P
and C are allowed to strongly couple to �+��. We limit ourselves to isoscalar
S-wave states, (00)++, since I = 2 must involve at least two q�q pairs and no
four-quark states with I = 2 are known. At the mass scales relevant to this
analysis, the decay of a charm particle into a (00)++ state with an accom-
panying pion consists of �ve channels l = 1 : : : 5 where 1 = ��, 2 = K �K,
3 = multi-meson states (four-pion state mainly at

p
s < 1:6GeV) 4 = �� and

5 = ��0. The amplitude for the particular channel (00)++
l � can be written in

the context of the K-matrix formalism as

Fl = (I � iK�)�1
lj Pj ; (2)

where I is the identity matrix, K is the K-matrix describing the isoscalar
S-wave scattering process, � is the phase-space matrix for the �ve channels,
and P is the \initial" production vector into the �ve channels. In this picture,
the production process can be viewed as consisting of an initial preparation
of several states, which are then propagated by the (I � iK�)�1 term into the
�nal one. Only the F1 amplitude is present in the isosinglet S-wave term since
we are describing the dipion channel.

We require a reliable K-matrix parametrization of (00)++-wave scattering.
To our knowledge the only self-consistent description of the S-wave isoscalar
scattering is given by the K-matrix representation of Anisovich and Sarantsev
in reference [7] obtained through a global �t of the available scattering data
from �� threshold up to 1900MeV. Their K-matrix parametrization is:

K00
ij (s) =

8<
:
X
�

g
(�)
i g

(�)
j

m2
� � s

+ f scatt
ij

1GeV2 � sscatt0

s� sscatt0

9=
; (s� sAm

2
�=2)

(s� sA0)(1� sA0)
: (3)

The g
(�)
i is the coupling constant of the K-matrix pole m� to the i meson

channel; the parameters f scatt
ij and sscatt0 describe a slowly varying part (which

we will call SVP) of the K-matrix elements; the factor (s�sAm
2
�=2)

(s�sA0)(1�sA0)
is to sup-

press false kinematical singularity in the physical region near the �� threshold
(Adler zero). The parameter values used in this paper are listed in Table 1,
which was provided by the authors of reference [7]. Note that K-matrix rep-
resentation is by de�nition real and symmetric. The K-matrix values of Ta-
ble 1 generate a physical T-matrix, T = (I � i� �K)�1K, which describes the
scattering in the (00)++-wave with �ve poles, whose masses, half-widths, and
couplings are listed in Table 2.

The f0 series reported in Table 2 di�ers somewhat from that reported by
the PDG [10] group. In addition to the f0(980) and f0(1500) poles which
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Table 1
K-matrix parameters. Masses and coupling constants are in GeV. Only the i = 1
fij terms are reported here since they are the only values relevant to the three-pion
decay.

m� g�� gK �K g4� g�� g��0

0:65100 0:24844 �0:52523 0:00000 �0:38878 �0:36397

1:20720 0:91779 0:55427 0:00000 0:38705 0:29448

1:56122 0:37024 0:23591 0:62605 0:18409 0:18923

1:21257 0:34501 0:39642 0:97644 0:19746 0:00357

1:81746 0:15770 �0:17915 �0:90100 �0:00931 0:20689

sscatt0 f scatt11 f scatt12 f scatt13 f scatt14 f scatt15

�3:30564 0:26681 0:16583 �0:19840 0:32808 0:31193

sA sA0

1:0 �0:2

Table 2
T-matrix poles and �+�� scattering coupling-constants; phases are in degrees. The
f0(980) pole position is found by the authors of [7] on the second Riemann sheet,
thus the closest physical region is the beginning of K �K threshold.

T-matrix pole gKK=g�� g4�=g�� g��=g�� g��0=g��

( m;�=2 ) GeV

f0(980)

(1.019, 0.038) 1.3970 ei83:4 0.3572 ei67:8 1.1660 ei85:5 0.9662 ei89:0

f0(1300)

(1.306, 0.170) 0.2579 e�i16:6 2.1960 e�i178:7 0.3504 ei23:2 0.5547 ei16:2

f0(1200 � 1600)

(1.470, 0.960) 1.1140 e�i0:4 2.2200 e�i6:8 0.569 ei17:7 0.2309 ei54:6

f0(1500)

(1.488, 0.058) 0.5460 e�i1:8 1.9790 ei85:3 0.4083 ei37:9 0.4692 ei74:6

f0(1750)

(1.746, 0.160) 0.1338 ei32:6 1.3680 ei134:8 0.2979 ei25:1 0.5843 e�i0:5

also appear in the PDG classi�cation, three other poles are present, f0(1300),
f0(1200 � 1600) and f0(1750), in contrast with only two poles listed by the
PDG, f0(1370) and f0(1710). The �ve-pole series used here is able to con-
sistently reproduce the available S-wave isoscalar data in the energy range
relevant for this analysis. The decay amplitude for the D meson into the
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three-pion �nal state, where �+�� are in a (IJPC = 00++)-wave is then

F1=(I � iK�)�1
1j

8<
:
X
�

��g
(�)
j

m2
� � s

+ fprod
1j

1GeV2 � sprod0

s� sprod0

9=
;

� (s� sAm
2
�=2)

(s� sA0)(1� sA0)
; (4)

where �� is the coupling to them� pole in the `initial' production process, f
prod
1j

and sprod0 are the P-vector SVP parameters. �� and f
prod
1j are in general complex

numbers [4]. The phase space matrix elements for the two pseudoscalar-particle
states are:

�i(s)=

vuut 1� (m1i +m2i)2

s

! 
1� (m1i �m2i)2

s

!

(i = ��;K �K; ��; ��0): (5)

The normalization is such that �i ! 1 as s ! 1. The expression for the
multi-meson state phase space can be found in reference [7].

We note that the P-vector poles have to be the same as those of the K-matrix

in order to cancel out in�nities in the �nal amplitude as each pole is realized.
The P-vector SVP parametrization is chosen in complete analogy with that
used for the K-matrix. The need for the Adler-zero term, not a-priori required
in the P-vector, will be investigated by studying its e�ect on the quality of the
�t to our data. The K-matrix parameters are �xed to the values of Table 1
in our Dalitz plot �ts. The free parameters are the P-vector parameters (��,
fprod
1j and sprod0 ), and the coeÆcients and phases of Eq. 1 (a0; ai and Æ0; Æi). All
amplitudes are referenced to �1 which is �xed at 1. The P-vector Adler-zero
parameters have been chosen to be identical to those of the K-matrix, sA and
sA0. Because of the limited allowed range for these parameters, we do not
expect our results to critically depend on this particular choice.

4 The likelihood function and �tting procedure

The probability density function is corrected for geometrical acceptance and
reconstruction eÆciency. We �nd that �nite-mass resolution e�ects are negligi-
ble. The shape of the background in the signal region is parametrized through
a polynomial �t to the Dalitz plot of mass sidebands 1 . The number of back-

1 For this analysis the sideband between the two signal peaks begins at 3� from
the D+ peak and ends at 3� from the D+

s peak where the �'s are the r.m.s. widths

8



ground events expected in the signal region is estimated through �ts to the
�+���+ mass spectrum. All background parameters are included as additional
�t parameters and tied to the results of the sideband �ts through the inclusion
in the likelihood of a �2 penalty term derived from the covariance matrix of the
sideband �t. The contamination in theD+ left sideband fromD+ ! K��+�+,
where K� is misidenti�ed as ��, is reduced to a negligible level (3.5% of the
total events in the sideband) using the tight �Cerenkov cut. Background from
the decay, D+

s ! �0�+ with �0 ! � and � ! �+��, is expected in the
D+ signal and sideband regions. It is included by adding a �-BW component
in the background parametrization. The D+ and D+

s samples are �tted with
likelihood functions L consisting of signal and background probability den-
sities. Checks for �tting procedure are made using Monte Carlo techniques
and all biases are found to be small compared to the statistical errors. The
systematic errors on our results are evaluated by comparing their values in
disjoint samples corresponding to di�erent experimental running conditions,
di�erent kinematical regions, such as low versus highD momenta, and particle
versus anti-particle. A split sample systematic error was added in quadrature
to the existing statistical error to make the split sample estimates consistent
to within 1 � if necessary. The assumption that the shape of the background
in the sideband is a good representation of the background in the signal re-
gion could potentially constitute another source of systematic error. We study
this e�ect by varying the polynomial function degree and adding/removing
the Breit-Wigner terms, which are introduced to take into account any feed-
through from resonances in the background, and computing the r.m.s. of the
di�erent results, which is added in quadrature to form the total experimental
systematic error.

5 Results for the D+
s
! �

+
�
�

�
+ decay

We recall that the physical parameters of our �t are P-vector parameters: ��,
fprod
1j , along with sprod0 , and the coeÆcients and phases of Eq. 1, a0; ai and
Æ0; Æi. The K-matrix parameters are �xed to the values given in Table 1. The
general procedure, adopted for all the �ts reported here, consists of several
successive steps in order to eliminate contributions whose e�ects on our �t are
marginal. We initially consider all the well established, non-scalar resonances
decaying to �+�� with a sizeable branching ratio. Contributions are removed
if their amplitude coeÆcients, ai of Eq. 1, are less than 2 � signi�cant and

the �t con�dence level increases due to the decreased number of degrees of
freedom in the �t. The P-vector initial form includes the complete set of K-

of the two measured mass peaks. The left sideband for D+ covers the �5� to �3�
region from the D+ peak, while the right sideband for D+

s , the 3� through 6�
region from the D+

s mass peak.

9



matrix poles and slowly varying function (SVP) as given in reference [7]; ��
as well as the fprod

1j terms of Eq. 4 are removed with the same criteria. The
�t con�dence levels (C.L.) are evaluated with a �2 estimator over a Dalitz
plot with bin size adaptively chosen to maintain a minimum number of events
in each bin. Once the minimal set of parameters is reached, addition of each
single contribution previously eliminated is reinstated to verify that the C.L.
does not improve.

Table 3 shows the P-vector composition from our �nal �t results on the D+
s !

�+���+ Dalitz plot. The �fth K-matrix pole and the second SVP contribution

Table 3
P-vector parameters of the D+

s �t.

P-vector parameters modulus phase (deg)

�1 1 (�xed) 0 (�xed)

�2 0:974 � 0:102 207:0 � 5:9

�3 0:755 � 0:196 85:7 � 19:3

�4 1:760 � 0:371 119:1 � 19:9

fprod11 0:863 � 0:153 202:3 � 9:4

fprod13 3:768 � 0:746 140:3 � 16:7

fprod14 2:179 � 0:663 106:6 � 24:4

fprod15 2:452 � 0:684 236:5 � 13:7

were eliminated. The inclusion of an Adler zero term did not improve our �t
quality and was removed. The quoted results were obtained with sprod0 = �3
GeV2, but they were insensitive to any choice in the range �5GeV2 � sprod0 �
�1GeV2 { typical parameter values for the SVP.

The resulting �t fractions 2 , phases and amplitude coeÆcients are quoted
in Table 4. We note that both the three-body non-resonant and �0(770)�+

components were not required by the �t. We represent the entire S-wave con-
tribution by a single �t fraction since, as previously discussed, one cannot dis-
tinguish the di�erent resonance or SVP S-wave contributions on the real axis.
The couplings to T-matrix physical poles, reported in Table 5, are computed
by continuing the amplitude F1(s) into the complex s-plane to the position
of the poles and evaluating the pole residues 3 . The D+

s Dalitz projections

2 The quoted �t fractions are de�ned as the ratio between the intensity for a single
amplitude integrated over the Dalitz plot and that of the total amplitude with all
the modes and interferences present.
3 The coupling to the f0(1200�1600) pole has to be looked at with a certain caution
because of the intrinsic limitations of the approximation used for the 4-body phase-
space when extrapolated very deeply into the complex plane.
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of our data are shown in Fig. 3 superimposed with our �nal �t projections.
Figure 4 shows the corresponding adaptive binning scheme used to obtain the
�t con�dence level.

Table 4
Fit results from the K-matrix model for D+

s .

decay channel �t fraction (%) phase (deg) amplitude coeÆcient

(S-wave) �+ 87:04 � 5:60 � 4:17 0 (�xed) 1 (�xed)

f2(1270)�
+ 9:74 � 4:49 � 2:63 168:0 � 18:7� 2:5 0:165 � 0:033 � 0:032

�0(1450)�+ 6:56 � 3:43 � 3:31 234:9 � 19:5 � 13:3 0:136 � 0:030 � 0:035

Fit C.L 3.0%

Table 5
D+
s ! �+���+ production coupling constants for the �ve T-matrix poles, which

comprise the S-wave component in Table 4, referenced to the f0(980). Phases are
in degrees.

T-matrix pole (m;�=2) (GeV) D+
s (relative) coupling constant

f0(980) (1.019, 0.038) 1 ei0 (�xed)

f0(1300) (1.306, 0.170) (0:43 � 0:04) ei(�163:8�4:9)

f0(1200 � 1600) (1.470, 0.960) (4:90 � 0:08) ei( 80:9�1:06)

f0(1500) (1.488, 0.058) (0:51 � 0:02) ei( 83:1�3:03)

f0(1750) (1.746, 0.160) (0:82 � 0:02) ei(�127:9�2:25)
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Figure 3. D+
s Dalitz-plot projections with our �nal �t superimposed. The back-

ground shape under the signal is also shown.
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Figure 4. D+
s adaptive binning Dalitz-plot for the K-matrix model.

6 Results for the D+ ! �
+
�
�

�
+ decay

The D+ ! �+���+ Dalitz plot shows an excess of events at low �+�� mass,
which cannot be explained in the context of the simple isobar model with
the usual mixture of well established resonances along with a constant, non-
resonant amplitude. A new scalar resonance, the �(600), has been previously
proposed [11] to describe this excess. However we know that complex structure
can be generated by the interplay among the S-wave resonances and the un-
derlying non-resonant S-wave component that cannot be properly described
in the context of a simple isobar model. It is therefore interesting to study
this channel with the present formalism, which embeds all our experimental
knowledge about the S-wave �+�� scattering dynamics.

With the same procedure based on statistical signi�cance and �t con�dence
level used in the D+

s analysis, we obtained the �nal set of P-vector parameters
that is reported in Table 6. The last two poles and the last three SVP terms

Table 6
P-vector parameters of the D+ �t.

P-vector parameters modulus phase (deg)

�1 1 (�xed) 0 (�xed)

�2 2:471 � 0:431 82:5 � 10:3

�3 1:084 � 0:386 102:8 � 23:5

fprod11 2:565 � 0:737 155:4 � 18:3

fprod12 6:312 � 0:967 �160:0 � 8:7
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were eliminated. The sprod0 value is measured to be sprod0 = (�1:0+0:4
�5:5)GeV

2 .
The �t did not require an Adler-zero term.

Beside the S-wave component, the decay appears to be dominated by the
�0(770) plus a f2(1270) component. The �0(1450) was always found to have
less than 2 � signi�cance and was therefore dropped from the �nal �t. In
analogy with the D+

s , the direct three-body non-resonant component was not
necessary since the SVP of the S-wave could reproduce the entire non-resonant
portion of the Dalitz plot. The complete �t results are reported in Table 7.
The resulting production coupling constants are reported in Table 8. The D+

Table 7
Fit results from the K-matrix model �t for D+.

decay channel �t fraction (%) phase (deg) amplitude coeÆcient

(S-wave) �+ 56:00 � 3:24 � 2:08 0 (�xed) 1 (�xed)

f2(1270)�
+ 11:74 � 1:90 � 0:23 �47:5� 18:7 � 11:7 1:147 � 0:291 � 0:047

�0(770)�+ 30:82 � 3:14 � 2:29 �139:4 � 16:5� 9:9 1:858 � 0:505 � 0:033

Fit C.L. 7.7%

Table 8
D+

! �+���+ production coupling constants for the �ve T-matrix poles, which
comprise the S-wave component in Table 7, referenced to the f0(980). Phases are
in degrees.

T-matrix pole (m;�=2) (GeV) D+ (relative) coupling constant

f0(980) (1.019, 0.038) 1 ei0 (�xed)

f0(1300) (1.306, 0.170) (0:67 � 0:03) ei(�67:9�3:0)

f0(1200 � 1600) (1.470, 0.960) (1:70 � 0:17) ei(�125:5�1:7)

f0(1500) (1.488, 0.058) (0:63 � 0:02) ei(�142:2�2:2)

f0(1750) (1.746, 0.160) (0:36 � 0:02) ei(�135:0�2:9)

Dalitz projections are shown in Fig. 5 and the corresponding adaptive binning
scheme is shown in Fig. 6. The most interesting feature of these results is
the fact that the better treatment of the S-wave contribution provided by the
K-matrix model can reproduce the low-mass �+�� structure of the D+ Dalitz
plot. This suggests that any �-like object in the D decay should be consistent
with the same �-like object measured in the �+�� scattering. We believe
that additional studies with higher statistics will be required to completely
understand the � puzzle.
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Figure 5. D+ Dalitz-plot projections with our �nal �t superimposed. The back-
ground shape under the signal is also shown.
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Figure 6. D+ adaptive binning Dalitz-plot for the K-matrix �t.

7 D
+
s
and D+ �nal results

The K-matrix parameters used in this analysis correspond to the best solution
provided by the authors of reference [7]. Several solutions with slightly di�erent
parametrizations for the 4� phase-space and for the K-matrix background
terms were presented in the same paper. We evaluate the systematic error
due to solution choice by computing the r.m.s. of the �t fractions and phases
obtained using the di�erent solutions. The �nal results, including this last
systematic error, are presented in Table 9.
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Table 9
Final results on D+

s and D+
! �+���+ �t fractions and phases. Beside the �rst

reported error, which is statistical, two systematic errors are quoted. The �rst one
is from the measurement systematics and the second one is due to the particular
solution chosen for the K-matrix poles and backgrounds.

D+
s

decay channel �t fraction (%) phase (deg)

(S-wave) �+ 87:04 � 5:60 � 4:17 � 1:34 0 (�xed)

f2(1270)�
+ 9:74 � 4:49 � 2:63 � 1:32 168:0 � 18:7 � 2:5� 21:7

�0(1450)�+ 6:56 � 3:43 � 3:31 � 2:90 234:9 � 19:5� 13:3 � 24:9

D+

decay channel �t fraction (%) phase (deg)

(S-wave) �+ 56:00 � 3:24 � 2:08 � 0:50 0 (�xed)

f2(1270)�
+ 11:74 � 1:90 � 0:23 � 0:18 �47:5 � 18:7 � 11:7� 5:3

�0(770)�+ 30:82 � 3:14 � 2:29 � 0:17 �139:4 � 16:5 � 9:9� 5:0

8 Conclusions

The K-matrix formalism has been applied for the �rst time to the charm
sector in our Dalitz plot analyses of the D+

s and D+ ! �+���+ �nal states.
The results are extremely encouraging since the same K-matrix description
gives a coherent picture of both two-body scattering measurements in light-
quark experiments as well as charm meson decay. This result was not obvious
beforehand. Furthermore, the same model is able to reproduce features of
the D+ ! �+���+ Dalitz plot that otherwise would require an ad hoc �
resonance. In addition, the non-resonant component of each decay seems to
be described by known two-body S-wave dynamics without the need to include
constant amplitude contributions.

The K-matrix treatment of the S-wave component of the decay amplitude
allows for a direct interpretation of the decay mechanism in terms of the �ve
virtual channels considered: ��, K �K, ��, ��0 and 4 �. By inserting KK�1 in
the decay amplitude, F ,

F = (I � iK�)�1P = (I � iK�)�1KK�1P = TK�1P = TQ (6)

we can view the decay as consisting of an initial production of the �ve virtual
states which then scatter via the physical T into the �nal state. The Q-vector
contains the production amplitude of each virtual channel in the decay. Fig-
ure 7 shows the ratio of the moduli of the Q-vector amplitudes with respect
to the �� modulus for the D+

s S-wave. The last plot in Fig. 7 represents
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the normalizing �� modulus. The two peaks of the ratios correspond to the
two dips of the �� normalizing modulus, while the two peaks due to the K-

matrix singularities, visible in the normalization plot, cancel out in the ratios.
Figure 8 shows the analogous plots for the D+ S-wave decay. The resulting
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Figure 7. Measured D+
s Q-vector components: the �rst four plots are the ratios of

moduli of the Q-vector amplitudes with respect to the �� modulus; the last plot is
the normalizing �� modulus.

picture, for both D+
s and D+ decay, is that the S-wave decay is dominated by

an initial production of ��, ��0 and K �K states. Dipion production is always
much smaller. This suggests that in both cases the S-wave decay amplitude
primarily arises from a s�s contribution such as that produced by the Cabibbo
favoured weak diagram for the D+

s and one of the two possible singly Cabibbo
suppressed diagrams for the D+. For the D+, the s�s contribution competes
with a d �d contribution. That the f0(980) appears as a peak in the �� mass
distribution in D+ decay, as it does in Ds decay, shows that for the S-wave
component the s�s contribution dominates [2]. Comparing the relative S-wave
�t fractions that we observe for D+

s and D+ reinforces this picture. The S-
wave decay fraction for the D+

s (87%) is larger than that for the D+ (56%).
Rather than coupling to an S-wave dipion, the d �d piece prefers to couple to a
vector state like �0(770) that alone accounts for � 30% of D+ decay.

This interpretation also bears on the role of the annihilation diagram in the
D+

s ! �+���+ decay. We believe that Fig. 7 suggests that the S-wave an-
nihilation contribution is negligible over much of the dipion mass spectrum.
It might be interesting to search for annihilation contributions in higher spin
channels, such as �0(1450)� and f2(1270)�.
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Figure 8. Measured D+ Q-vector components: the �rst four plots are the ratios of
moduli of the Q-vector amplitudes with respect to the �� modulus; the last plot is
the normalizing �� modulus.

9 Acknowledgments

We are particularly indebted to Prof. M. R. Pennington, for his patience in
guiding us through the fascinating K-matrix world and for his frequent advice
in formalizing our problem. This work would have not be possible without the
invaluable help and assistance by Prof. V. V. Anisovich and Prof. A. V. Sarant-
sev, who provided us with K-matrix input numbers and even crucial pieces
of code. Their expertise was vital to us and certainly accelerated our work.
We wish to acknowledge the assistance of the sta�s of Fermi National Ac-
celerator Laboratory, the INFN of Italy, and the physics departments of the
collaborating institutions. This research was supported in part by the US Na-
tional Science Fundation, the US Department of Energy, the Italian Istituto
Nazionale di Fisica Nucleare and Ministero dell'Istruzione dell'Universit�a e
della Ricerca, the Brazilian Conselho Nacional de Desenvolvimento Cient���co
e Tecnol�ogico, CONACyT-M�exico, the Korean Ministry of Education, and the
Korean Science and Engineering Foundation.

17



References

[1] S. Spanier and N. A. T�ornqvist, Scalar Mesons (rev.), Particle Data Group,
Phys. Rev. D66 (2002) 010001-450.

[2] M. R. Pennington, Proc. of Oxford Conf. in honour of R. H. Dalitz, Oxford,
July, 1990, Ed. by I. J. R. Aitchison, et al., (World Scienti�c) pp. 66{107; Proc.
of Workshop on Hadron Spectroscopy (WHS 99), Rome, March 1999, Ed. by
T. Bressani et al., (INFN, Frascati).

[3] E. P. Wigner, Phys. Rev. 70 (1946) 15.

[4] S. U. Chung et al., Ann. Physik 4 (1995) 404.

[5] I. J. R. Aitchison, Nucl. Phys. A189, (1972) 417.

[6] K. L. Au, D. Morgan, and M. R. Pennington, Phys. Rev. D35 (1987) 1633.

[7] V. V. Anisovich and A. V. Sarantsev, Eur. Phys. J. A16 (2003) 229.

[8] J. M. Link et al., Nucl. Instr. Meth. A484 (2002) 270.

[9] P. L. Frabetti et al., Phys. Lett. B407 (1997) 79.

[10] Particle Data Group, Phys. Rev. D66 (2002) 010001.

[11] E. M. Aitala et al., Phys. Rev. Lett. 86 (2001) 770.

[12] R. N. Chan and P. V. Landsho�, Nucl. Phys. B266 (1986) 451.

18


